A Space-Time Certified Reduced Basis Method for Burgers’ Equation

نویسندگان

  • Masayuki Yano
  • Anthony T. Patera
  • Karsten Urban
  • MASAYUKI YANO
  • ANTHONY T. PATERA
چکیده

We present a space-time certified reduced basis method for Burgers’ equation over the spatial interval (0, 1) and the temporal interval (0, T ] parametrized with respect to the Peclet number. We first introduce a Petrov-Galerkin space-time finite element discretization, which enjoys a favorable inf-sup constant that decreases slowly with Peclet number and final time T . We then consider an hp interpolation-based space-time reduced basis approximation and associated Brezzi-Rappaz-Raviart a posteriori error bounds. We detail computational procedures that permit offline-online decomposition for the three key ingredients of the error bounds: the dual norm of the residual, a lower bound for the inf-sup constant, and the space-time Sobolev embedding constant. Numerical results demonstrate that our space-time formulation provides improved stability constants compared to classical L2-error estimates; the error bounds remain sharp over a wide range of Peclet numbers and long integration times T , unlike the exponentially growing estimate of the classical formulation for high Peclet number cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation

In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.

متن کامل

The use of radial basis functions by variable shape parameter for solving partial differential equations

In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...

متن کامل

Reduced Basis Approximation and A Posteriori Error Estimation for the Time-Dependent Viscous Burgers Equation

In this paper we present rigorous a posteriori L2 error bounds for reduced basis approximations of the unsteady viscous Burgers equation in one space dimension. The key new ingredient is accurate solution–dependent (Online) calculation of the exponential–in–time stability factor by the Successive Constraint Method. Numerical results indicate that the a posteriori error bounds are practicable fo...

متن کامل

An approximation to the solution of Benjamin-Bona-Mahony-Burgers equation

In this paper, numerical solution of the Benjamin-Bona-Mahony-Burgers (BBMB) equation is obtained by using the mesh-free method based on the collocation method with radial basis functions (RBFs). Stability analysis of the method is discussed. The method is applied to several examples and accuracy of the method is tested in terms of $L_2$ and $L_infty$ error norms.

متن کامل

Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves

The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012